What's special about the coins?

Tea talk Huh?

curve representation

$$
\begin{aligned}
& \Gamma: \mathbb{I} \subset \mathbb{R} \rightarrow \mathbb{R}^{2} \\
& \Gamma(t)=(x(t), y(t))
\end{aligned}
$$

- Velocity

$$
\vec{v}=\vec{\Gamma}^{\prime}(t)
$$

- Curve reconstruction

$$
\Gamma(t)=\Gamma\left(t_{o}\right)+\int_{t_{o}}^{t} \vec{v}(\tilde{t}) d \tilde{t}
$$

Natural parameterization

- Arc-length coordinate

$$
\begin{aligned}
\Gamma(s) & =(x(s), y(s)) \\
d s & =\sqrt{d x^{2}+d y^{2}}
\end{aligned}
$$

- Velocity has unit speed • Angle-profile representation

$$
\begin{aligned}
\vec{v} & =\vec{\Gamma}^{\prime}(s)=v \hat{t} \\
v & =\|\vec{v}\|=1
\end{aligned}
$$

Length is trivial.
Orientation matters.

Convex curves

- Monotonic angle-profile

$$
\{\theta(s)\}
$$

- Angle coordinate

$$
\Gamma(\theta)=(x(\theta), y(\theta))
$$

- Radius-profile representation

$$
\begin{aligned}
& \vec{v}=\vec{\Gamma}^{\prime}(\theta)=v \hat{t} \\
& v=d s / d \theta=r(\theta)
\end{aligned}
$$

$$
\hat{t}(\theta)=\cos (\theta) \hat{x}+\sin (\theta) \hat{y}
$$

- Velocity

$$
\begin{aligned}
& \text { length = radius of curvature. } \\
& \text { Orientation is trivially given. }
\end{aligned}
$$

$\{r(\theta)\}$

- Curve reconstruction
$\Gamma(\theta)=\Gamma\left(\theta_{o}\right)+\int_{\theta_{o}}^{\theta} r(\theta) \hat{t}(\tilde{\theta}) d \tilde{\theta}$

So what about the coins?

- How about this manhole?

- Wankel engine?

Curves of constant width

Reuleaux polygons

3D version

Barbier's theorem

Curves of constant width D have circumference $D \pi$

$$
\int_{0}^{2 \pi} r(\theta) d \theta=D \pi
$$

proof

$$
\begin{gather*}
y(\pi)-y(0)=\int_{0}^{\pi} r\left(\theta+\theta_{o}\right) \sin (\theta) d \theta=D\left(\theta_{o}\right) \\
d D / d \theta_{o}=\int_{0}^{\pi} r^{\prime}\left(\theta+\theta_{o}\right) \sin (\theta) d \theta=0 \quad D \\
{\left[r\left(\theta+\theta_{o}\right) \sin (\theta)\right]_{0}^{\pi}-\int_{0}^{\pi} r\left(\theta+\theta_{o}\right) \cos (\theta) d \theta=0} \\
0 \quad-\quad(x(\pi)-x(0))=0 \\
\therefore x(\pi)=x(0) \quad \text { Interesting! }
\end{gather*}
$$

proof

$$
\begin{array}{rl}
x(\pi)-x(0) & \int_{0}^{\pi} r\left(\theta+\theta_{o}\right) \cos (\theta) d \theta=0 \\
\int_{0}^{\pi} r^{\prime}\left(\theta+\theta_{o}\right) \cos (\theta) d \theta=0 & D
\end{array}
$$

$$
\left[r\left(\theta+\theta_{o}\right) \cos (\theta)\right]_{0}^{\pi}-\int_{0}^{\pi} r\left(\theta+\theta_{o}\right) \sin (\theta) d \theta=0
$$

$$
r(\theta)+r(\theta+\pi)=D
$$

proof

Huh theorem? :)
$r(\theta)+r(\theta+\pi)=D$

Barbier's theorem
$\int_{0}^{2 \pi} r(\theta) d \theta=D \pi$

