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curve representation
� : I ⇢ R ! R2

�(t) = (x(t), y(t))

~v = ~�0(t)

�(t) = �(t
o

) +

Z
t

t

o

~v(t̃) dt̃

• Velocity

• Curve reconstruction



Natural parameterization

• Velocity has unit speed 

�(s) = (x(s), y(s))

ds =
p

dx

2 + dy

2

{✓(s)}~v = ~�0(s) = vt̂

v = k~vk = 1

• Angle-profile representation

• Arc-length coordinate

Length is trivial.  
Orientation matters.

Orientation of the tangent vector.



Convex curves
• Monotonic angle-profile 

• Angle coordinate

{✓(s)}

• Velocity
~v = ~�0(✓) = vt̂

v = ds/d✓ = r(✓)

• Radius-profile representation

{r(✓)}

length = radius of curvature. 
Orientation is trivially given.

• Curve reconstruction

�(✓) = �(✓
o

) +

Z
✓

✓

o

r(✓)t̂(✓̃) d✓̃
ˆ

t(✓) = cos(✓)x̂+ sin(✓)ŷ

�(✓) = (x(✓), y(✓))



So what about the coins?

• How about this manhole? • Wankel engine?



Curves of constant width
Reuleaux polygons 

3D version



Barbier’s theorem

Z 2⇡

0
r(✓)d✓ = D⇡

Curves of constant width 
  

have circumference D⇡
D

its vertices: if the vertices are P0, P1, . . . , Pn

then

Vol =
1

n!
det(P1 � P0, P2 � P0, . . . , Pn

� P0).

If the vertices move with constant velocities, the volume is a polynomial in
t (of degree equal to the dimension of the ambient space).

Consider the sum of volumes of the simplices of triangulation as a func-
tion of time; denote this sum by V (t). Since scaling and reorienting do not
a↵ect our considerations, assume that the volume of � is 1. For small values
of t, we have V (t) = 1. This is due to the constraint: since each vertex on a
facet remains on this facet, for small values of t we still have a triangulation
of �. Since the sum of volumes is a polynomial in t we have V (t) = 1 for
all t.

What about t = 1? Each vertex has reached its destination, so the
volume of the resulting simplex vanishes, unless all vertices were colored
in di↵erent colors. In the latter case, the volume is ±1, depending on the
orientation. Since V (0) = 1, we have V (1) = 1 as well.

This implies that the di↵erence between the number of positively and
negatively oriented simplices of the triangulation, colored in all n+1 colors,
is one. In particular, the number of simplices of the triangulation colored in
all n+ 1 colors is odd.

Barbier’s Theorem

Barbier’s Theorem concerns curves of constant width. Recall that a
convex curve has constant width if the distance between a pair of parallel
support lines to the curve does not depend on the direction of these lines.

Theorem 3 (J.-É. Barbier, 1860 [5]) The perimeter length of a curve
of constant width w equals ⇡w.

The proof described below is by way of rolling; I am not sure of its origin.

Figure 3: Figures of constant width as wheels.
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proof
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its vertices: if the vertices are P0, P1, . . . , Pn

then

Vol =
1

n!
det(P1 � P0, P2 � P0, . . . , Pn

� P0).

If the vertices move with constant velocities, the volume is a polynomial in
t (of degree equal to the dimension of the ambient space).

Consider the sum of volumes of the simplices of triangulation as a func-
tion of time; denote this sum by V (t). Since scaling and reorienting do not
a↵ect our considerations, assume that the volume of � is 1. For small values
of t, we have V (t) = 1. This is due to the constraint: since each vertex on a
facet remains on this facet, for small values of t we still have a triangulation
of �. Since the sum of volumes is a polynomial in t we have V (t) = 1 for
all t.

What about t = 1? Each vertex has reached its destination, so the
volume of the resulting simplex vanishes, unless all vertices were colored
in di↵erent colors. In the latter case, the volume is ±1, depending on the
orientation. Since V (0) = 1, we have V (1) = 1 as well.

This implies that the di↵erence between the number of positively and
negatively oriented simplices of the triangulation, colored in all n+1 colors,
is one. In particular, the number of simplices of the triangulation colored in
all n+ 1 colors is odd.

Barbier’s Theorem

Barbier’s Theorem concerns curves of constant width. Recall that a
convex curve has constant width if the distance between a pair of parallel
support lines to the curve does not depend on the direction of these lines.

Theorem 3 (J.-É. Barbier, 1860 [5]) The perimeter length of a curve
of constant width w equals ⇡w.

The proof described below is by way of rolling; I am not sure of its origin.

Figure 3: Figures of constant width as wheels.
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0 � (x(⇡)� x(0)) = 0

Interesting!



proof
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its vertices: if the vertices are P0, P1, . . . , Pn

then

Vol =
1

n!
det(P1 � P0, P2 � P0, . . . , Pn

� P0).

If the vertices move with constant velocities, the volume is a polynomial in
t (of degree equal to the dimension of the ambient space).

Consider the sum of volumes of the simplices of triangulation as a func-
tion of time; denote this sum by V (t). Since scaling and reorienting do not
a↵ect our considerations, assume that the volume of � is 1. For small values
of t, we have V (t) = 1. This is due to the constraint: since each vertex on a
facet remains on this facet, for small values of t we still have a triangulation
of �. Since the sum of volumes is a polynomial in t we have V (t) = 1 for
all t.

What about t = 1? Each vertex has reached its destination, so the
volume of the resulting simplex vanishes, unless all vertices were colored
in di↵erent colors. In the latter case, the volume is ±1, depending on the
orientation. Since V (0) = 1, we have V (1) = 1 as well.

This implies that the di↵erence between the number of positively and
negatively oriented simplices of the triangulation, colored in all n+1 colors,
is one. In particular, the number of simplices of the triangulation colored in
all n+ 1 colors is odd.

Barbier’s Theorem

Barbier’s Theorem concerns curves of constant width. Recall that a
convex curve has constant width if the distance between a pair of parallel
support lines to the curve does not depend on the direction of these lines.

Theorem 3 (J.-É. Barbier, 1860 [5]) The perimeter length of a curve
of constant width w equals ⇡w.

The proof described below is by way of rolling; I am not sure of its origin.

Figure 3: Figures of constant width as wheels.
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Barbier’s theorem

its vertices: if the vertices are P0, P1, . . . , Pn

then

Vol =
1

n!
det(P1 � P0, P2 � P0, . . . , Pn

� P0).

If the vertices move with constant velocities, the volume is a polynomial in
t (of degree equal to the dimension of the ambient space).

Consider the sum of volumes of the simplices of triangulation as a func-
tion of time; denote this sum by V (t). Since scaling and reorienting do not
a↵ect our considerations, assume that the volume of � is 1. For small values
of t, we have V (t) = 1. This is due to the constraint: since each vertex on a
facet remains on this facet, for small values of t we still have a triangulation
of �. Since the sum of volumes is a polynomial in t we have V (t) = 1 for
all t.

What about t = 1? Each vertex has reached its destination, so the
volume of the resulting simplex vanishes, unless all vertices were colored
in di↵erent colors. In the latter case, the volume is ±1, depending on the
orientation. Since V (0) = 1, we have V (1) = 1 as well.

This implies that the di↵erence between the number of positively and
negatively oriented simplices of the triangulation, colored in all n+1 colors,
is one. In particular, the number of simplices of the triangulation colored in
all n+ 1 colors is odd.

Barbier’s Theorem

Barbier’s Theorem concerns curves of constant width. Recall that a
convex curve has constant width if the distance between a pair of parallel
support lines to the curve does not depend on the direction of these lines.

Theorem 3 (J.-É. Barbier, 1860 [5]) The perimeter length of a curve
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Huh theorem?  :)


